

greenlet: Lightweight concurrent programming

Motivation

The “greenlet” package is a spin-off of Stackless [http://www.stackless.com], a version of CPython
that supports micro-threads called “tasklets”. Tasklets run
pseudo-concurrently (typically in a single or a few OS-level threads) and
are synchronized with data exchanges on “channels”.

A “greenlet”, on the other hand, is a still more primitive notion of
micro-thread with no implicit scheduling; coroutines, in other words.
This is useful when you want to
control exactly when your code runs. You can build custom scheduled
micro-threads on top of greenlet; however, it seems that greenlets are
useful on their own as a way to make advanced control flow structures.
For example, we can recreate generators; the difference with Python’s own
generators is that our generators can call nested functions and the nested
functions can yield values too. (Additionally, you don’t need a “yield”
keyword. See the example in test/test_generator.py).

Greenlets are provided as a C extension module for the regular unmodified
interpreter.

Example

Let’s consider a system controlled by a terminal-like console, where the user
types commands. Assume that the input comes character by character. In such
a system, there will typically be a loop like the following one:

def process_commands(*args):
 while True:
 line = ''
 while not line.endswith('\n'):
 line += read_next_char()
 if line == 'quit\n':
 print("are you sure?")
 if read_next_char() != 'y':
 continue # ignore the command
 process_command(line)

Now assume that you want to plug this program into a GUI. Most GUI toolkits
are event-based. They will invoke a call-back for each character the user
presses. [Replace “GUI” with “XML expat parser” if that rings more bells to
you :-)] In this setting, it is difficult to implement the
read_next_char() function needed by the code above. We have two incompatible
functions:

def event_keydown(key):
 ??

def read_next_char():
 ?? should wait for the next event_keydown() call

You might consider doing that with threads. Greenlets are an alternate
solution that don’t have the related locking and shutdown problems. You
start the process_commands() function in its own, separate greenlet, and
then you exchange the keypresses with it as follows:

def event_keydown(key):
 # jump into g_processor, sending it the key
 g_processor.switch(key)

def read_next_char():
 # g_self is g_processor in this simple example
 g_self = greenlet.getcurrent()
 # jump to the parent (main) greenlet, waiting for the next key
 next_char = g_self.parent.switch()
 return next_char

g_processor = greenlet(process_commands)
g_processor.switch(*args) # input arguments to process_commands()

gui.mainloop()

In this example, the execution flow is: when read_next_char() is called, it
is part of the g_processor greenlet, so when it switches to its parent
greenlet, it resumes execution in the top-level main loop (the GUI). When
the GUI calls event_keydown(), it switches to g_processor, which means that
the execution jumps back wherever it was suspended in that greenlet – in
this case, to the switch() instruction in read_next_char() – and the key
argument in event_keydown() is passed as the return value of the switch() in
read_next_char().

Note that read_next_char() will be suspended and resumed with its call stack
preserved, so that it will itself return to different positions in
process_commands() depending on where it was originally called from. This
allows the logic of the program to be kept in a nice control-flow way; we
don’t have to completely rewrite process_commands() to turn it into a state
machine.

Usage

Introduction

A “greenlet” is a small independent pseudo-thread. Think about it as a
small stack of frames; the outermost (bottom) frame is the initial
function you called, and the innermost frame is the one in which the
greenlet is currently paused. You work with greenlets by creating a
number of such stacks and jumping execution between them. Jumps are never
implicit: a greenlet must choose to jump to another greenlet, which will
cause the former to suspend and the latter to resume where it was
suspended. Jumping between greenlets is called “switching”.

When you create a greenlet, it gets an initially empty stack; when you
first switch to it, it starts to run a specified function, which may call
other functions, switch out of the greenlet, etc. When eventually the
outermost function finishes its execution, the greenlet’s stack becomes
empty again and the greenlet is “dead”. Greenlets can also die of an
uncaught exception.

For example:

from greenlet import greenlet

def test1():
 print(12)
 gr2.switch()
 print(34)

def test2():
 print(56)
 gr1.switch()
 print(78)

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

The last line jumps to test1, which prints 12, jumps to test2, prints 56,
jumps back into test1, prints 34; and then test1 finishes and gr1 dies.
At this point, the execution comes back to the original gr1.switch()
call. Note that 78 is never printed.

Parents

Let’s see where execution goes when a greenlet dies. Every greenlet has a
“parent” greenlet. The parent greenlet is initially the one in which the
greenlet was created (this can be changed at any time). The parent is
where execution continues when a greenlet dies. This way, greenlets are
organized in a tree. Top-level code that doesn’t run in a user-created
greenlet runs in the implicit “main” greenlet, which is the root of the
tree.

In the above example, both gr1 and gr2 have the main greenlet as a parent.
Whenever one of them dies, the execution comes back to “main”.

Uncaught exceptions are propagated into the parent, too. For example, if
the above test2() contained a typo, it would generate a NameError that
would kill gr2, and the exception would go back directly into “main”.
The traceback would show test2, but not test1. Remember, switches are not
calls, but transfer of execution between parallel “stack containers”, and
the “parent” defines which stack logically comes “below” the current one.

Instantiation

greenlet.greenlet is the greenlet type, which supports the following
operations:

	greenlet(run=None, parent=None)

	Create a new greenlet object (without running it). run is the
callable to invoke, and parent is the parent greenlet, which
defaults to the current greenlet.

	greenlet.getcurrent()

	Returns the current greenlet (i.e. the one which called this
function).

	greenlet.GreenletExit

	This special exception does not propagate to the parent greenlet; it
can be used to kill a single greenlet.

The greenlet type can be subclassed, too. A greenlet runs by calling
its run attribute, which is normally set when the greenlet is
created; but for subclasses it also makes sense to define a run method
instead of giving a run argument to the constructor.

Switching

Switches between greenlets occur when the method switch() of a greenlet is
called, in which case execution jumps to the greenlet whose switch() is
called, or when a greenlet dies, in which case execution jumps to the
parent greenlet. During a switch, an object or an exception is “sent” to
the target greenlet; this can be used as a convenient way to pass
information between greenlets. For example:

def test1(x, y):
 z = gr2.switch(x+y)
 print(z)

def test2(u):
 print(u)
 gr1.switch(42)

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch("hello", " world")

This prints “hello world” and 42, with the same order of execution as the
previous example. Note that the arguments of test1() and test2() are not
provided when the greenlet is created, but only the first time someone
switches to it.

Here are the precise rules for sending objects around:

	g.switch(*args, **kwargs)

	Switches execution to the greenlet g, sending it the given
arguments. As a special case, if g did not start yet, then it
will start to run now.

	Dying greenlet

	If a greenlet’s run() finishes, its return value is the object
sent to its parent. If run() terminates with an exception, the
exception is propagated to its parent (unless it is a
greenlet.GreenletExit exception, in which case the exception
object is caught and returned to the parent).

Apart from the cases described above, the target greenlet normally
receives the object as the return value of the call to switch() in
which it was previously suspended. Indeed, although a call to
switch() does not return immediately, it will still return at some
point in the future, when some other greenlet switches back. When this
occurs, then execution resumes just after the switch() where it was
suspended, and the switch() itself appears to return the object that
was just sent. This means that x = g.switch(y) will send the object
y to g, and will later put the (unrelated) object that some
(unrelated) greenlet passes back to us into x.

Note that any attempt to switch to a dead greenlet actually goes to the
dead greenlet’s parent, or its parent’s parent, and so on. (The final
parent is the “main” greenlet, which is never dead.)

Methods and attributes of greenlets

	g.switch(*args, **kwargs)

	Switches execution to the greenlet g. See above.

	g.run

	The callable that g will run when it starts. After g started,
this attribute no longer exists.

	g.parent

	The parent greenlet. This is writeable, but it is not allowed to
create cycles of parents.

	g.gr_frame

	The current top frame, or None.

	g.dead

	True if g is dead (i.e. it finished its execution).

	bool(g)

	True if g is active, False if it is dead or not yet started.

	g.throw([typ, [val, [tb]]])

	Switches execution to the greenlet g, but immediately raises the
given exception in g. If no argument is provided, the exception
defaults to greenlet.GreenletExit. The normal exception
propagation rules apply, as described above. Note that calling this
method is almost equivalent to the following:

def raiser():
 raise typ, val, tb
g_raiser = greenlet(raiser, parent=g)
g_raiser.switch()

except that this trick does not work for the
greenlet.GreenletExit exception, which would not propagate
from g_raiser to g.

Greenlets and Python threads

Greenlets can be combined with Python threads; in this case, each thread
contains an independent “main” greenlet with a tree of sub-greenlets. It
is not possible to mix or switch between greenlets belonging to different
threads.

Garbage-collecting live greenlets

If all the references to a greenlet object go away (including the
references from the parent attribute of other greenlets), then there is no
way to ever switch back to this greenlet. In this case, a GreenletExit
exception is generated into the greenlet. This is the only case where a
greenlet receives the execution asynchronously. This gives
try:finally: blocks a chance to clean up resources held by the
greenlet. This feature also enables a programming style in which
greenlets are infinite loops waiting for data and processing it. Such
loops are automatically interrupted when the last reference to the
greenlet goes away.

The greenlet is expected to either die or be resurrected by having a new
reference to it stored somewhere; just catching and ignoring the
GreenletExit is likely to lead to an infinite loop.

Greenlets do not participate in garbage collection; cycles involving data
that is present in a greenlet’s frames will not be detected. Storing
references to other greenlets cyclically may lead to leaks.

Tracing support

Standard Python tracing and profiling doesn’t work as expected when used with
greenlet since stack and frame switching happens on the same Python thread.
It is difficult to detect greenlet switching reliably with conventional
methods, so to improve support for debugging, tracing and profiling greenlet
based code there are new functions in the greenlet module:

	greenlet.gettrace()

	Returns a previously set tracing function, or None.

	greenlet.settrace(callback)

	Sets a new tracing function and returns a previous tracing function, or
None. The callback is called on various events and is expected to have
the following signature:

def callback(event, args):
 if event == 'switch':
 origin, target = args
 # Handle a switch from origin to target.
 # Note that callback is running in the context of target
 # greenlet and any exceptions will be passed as if
 # target.throw() was used instead of a switch.
 return
 if event == 'throw':
 origin, target = args
 # Handle a throw from origin to target.
 # Note that callback is running in the context of target
 # greenlet and any exceptions will replace the original, as
 # if target.throw() was used with the replacing exception.
 return

For compatibility it is very important to unpack args tuple only when
event is either 'switch' or 'throw' and not when event is
potentially something else. This way API can be extended to new events
similar to sys.settrace().

C API Reference

Greenlets can be created and manipulated from extension modules written in C or
C++, or from applications that embed Python. The greenlet.h header is
provided, and exposes the entire API available to pure Python modules.

Types

	Type name

	Python name

	PyGreenlet

	greenlet.greenlet

Exceptions

	Type name

	Python name

	PyExc_GreenletError

	greenlet.error

	PyExc_GreenletExit

	greenlet.GreenletExit

Reference

	PyGreenlet_Import()

	A macro that imports the greenlet module and initializes the C API. This
must be called once for each extension module that uses the greenlet C API.

	int PyGreenlet_Check(PyObject *p)

	Macro that returns true if the argument is a PyGreenlet.

	int PyGreenlet_STARTED(PyGreenlet *g)

	Macro that returns true if the greenlet g has started.

	int PyGreenlet_ACTIVE(PyGreenlet *g)

	Macro that returns true if the greenlet g has started and has not died.

	PyGreenlet *PyGreenlet_GET_PARENT(PyGreenlet *g)

	Macro that returns the parent greenlet of g.

	int PyGreenlet_SetParent(PyGreenlet *g, PyGreenlet *nparent)

	Set the parent greenlet of g. Returns 0 for success. If -1 is returned,
then g is not a pointer to a PyGreenlet, and an AttributeError will
be raised.

	PyGreenlet *PyGreenlet_GetCurrent(void)

	Returns the currently active greenlet object.

	PyGreenlet *PyGreenlet_New(PyObject *run, PyObject *parent)

	Creates a new greenlet object with the callable run and parent
parent. Both parameters are optional. If run is NULL, then the
greenlet will be created, but will fail if switched in. If parent is
NULL, the parent is automatically set to the current greenlet.

	PyObject *PyGreenlet_Switch(PyGreenlet *g, PyObject *args, PyObject *kwargs)

	Switches to the greenlet g. args and kwargs are optional and
can be NULL. If args is NULL, an empty tuple is passed to the target
greenlet. If kwargs is NULL, no keyword arguments are passed to the target
greenlet. If arguments are specified, args should be a tuple and
kwargs should be a dict.

	PyObject *PyGreenlet_Throw(PyGreenlet *g, PyObject *typ, PyObject *val, PyObject *tb)

	Switches to greenlet g, but immediately raise an exception of type
typ with the value val, and optionally, the traceback object
tb. tb can be NULL.

Indices and tables

	Search Page

Index

greenlet: Lightweight concurrent programming

Motivation

The “greenlet” package is a spin-off of Stackless [http://www.stackless.com], a version of CPython
that supports micro-threads called “tasklets”. Tasklets run
pseudo-concurrently (typically in a single or a few OS-level threads) and
are synchronized with data exchanges on “channels”.

A “greenlet”, on the other hand, is a still more primitive notion of
micro-thread with no implicit scheduling; coroutines, in other words.
This is useful when you want to
control exactly when your code runs. You can build custom scheduled
micro-threads on top of greenlet; however, it seems that greenlets are
useful on their own as a way to make advanced control flow structures.
For example, we can recreate generators; the difference with Python’s own
generators is that our generators can call nested functions and the nested
functions can yield values too. (Additionally, you don’t need a “yield”
keyword. See the example in test/test_generator.py).

Greenlets are provided as a C extension module for the regular unmodified
interpreter.

Example

Let’s consider a system controlled by a terminal-like console, where the user
types commands. Assume that the input comes character by character. In such
a system, there will typically be a loop like the following one:

def process_commands(*args):
 while True:
 line = ''
 while not line.endswith('\n'):
 line += read_next_char()
 if line == 'quit\n':
 print("are you sure?")
 if read_next_char() != 'y':
 continue # ignore the command
 process_command(line)

Now assume that you want to plug this program into a GUI. Most GUI toolkits
are event-based. They will invoke a call-back for each character the user
presses. [Replace “GUI” with “XML expat parser” if that rings more bells to
you :-)] In this setting, it is difficult to implement the
read_next_char() function needed by the code above. We have two incompatible
functions:

def event_keydown(key):
 ??

def read_next_char():
 ?? should wait for the next event_keydown() call

You might consider doing that with threads. Greenlets are an alternate
solution that don’t have the related locking and shutdown problems. You
start the process_commands() function in its own, separate greenlet, and
then you exchange the keypresses with it as follows:

def event_keydown(key):
 # jump into g_processor, sending it the key
 g_processor.switch(key)

def read_next_char():
 # g_self is g_processor in this simple example
 g_self = greenlet.getcurrent()
 # jump to the parent (main) greenlet, waiting for the next key
 next_char = g_self.parent.switch()
 return next_char

g_processor = greenlet(process_commands)
g_processor.switch(*args) # input arguments to process_commands()

gui.mainloop()

In this example, the execution flow is: when read_next_char() is called, it
is part of the g_processor greenlet, so when it switches to its parent
greenlet, it resumes execution in the top-level main loop (the GUI). When
the GUI calls event_keydown(), it switches to g_processor, which means that
the execution jumps back wherever it was suspended in that greenlet – in
this case, to the switch() instruction in read_next_char() – and the key
argument in event_keydown() is passed as the return value of the switch() in
read_next_char().

Note that read_next_char() will be suspended and resumed with its call stack
preserved, so that it will itself return to different positions in
process_commands() depending on where it was originally called from. This
allows the logic of the program to be kept in a nice control-flow way; we
don’t have to completely rewrite process_commands() to turn it into a state
machine.

Usage

Introduction

A “greenlet” is a small independent pseudo-thread. Think about it as a
small stack of frames; the outermost (bottom) frame is the initial
function you called, and the innermost frame is the one in which the
greenlet is currently paused. You work with greenlets by creating a
number of such stacks and jumping execution between them. Jumps are never
implicit: a greenlet must choose to jump to another greenlet, which will
cause the former to suspend and the latter to resume where it was
suspended. Jumping between greenlets is called “switching”.

When you create a greenlet, it gets an initially empty stack; when you
first switch to it, it starts to run a specified function, which may call
other functions, switch out of the greenlet, etc. When eventually the
outermost function finishes its execution, the greenlet’s stack becomes
empty again and the greenlet is “dead”. Greenlets can also die of an
uncaught exception.

For example:

from greenlet import greenlet

def test1():
 print(12)
 gr2.switch()
 print(34)

def test2():
 print(56)
 gr1.switch()
 print(78)

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

The last line jumps to test1, which prints 12, jumps to test2, prints 56,
jumps back into test1, prints 34; and then test1 finishes and gr1 dies.
At this point, the execution comes back to the original gr1.switch()
call. Note that 78 is never printed.

Parents

Let’s see where execution goes when a greenlet dies. Every greenlet has a
“parent” greenlet. The parent greenlet is initially the one in which the
greenlet was created (this can be changed at any time). The parent is
where execution continues when a greenlet dies. This way, greenlets are
organized in a tree. Top-level code that doesn’t run in a user-created
greenlet runs in the implicit “main” greenlet, which is the root of the
tree.

In the above example, both gr1 and gr2 have the main greenlet as a parent.
Whenever one of them dies, the execution comes back to “main”.

Uncaught exceptions are propagated into the parent, too. For example, if
the above test2() contained a typo, it would generate a NameError that
would kill gr2, and the exception would go back directly into “main”.
The traceback would show test2, but not test1. Remember, switches are not
calls, but transfer of execution between parallel “stack containers”, and
the “parent” defines which stack logically comes “below” the current one.

Instantiation

greenlet.greenlet is the greenlet type, which supports the following
operations:

	greenlet(run=None, parent=None)

	Create a new greenlet object (without running it). run is the
callable to invoke, and parent is the parent greenlet, which
defaults to the current greenlet.

	greenlet.getcurrent()

	Returns the current greenlet (i.e. the one which called this
function).

	greenlet.GreenletExit

	This special exception does not propagate to the parent greenlet; it
can be used to kill a single greenlet.

The greenlet type can be subclassed, too. A greenlet runs by calling
its run attribute, which is normally set when the greenlet is
created; but for subclasses it also makes sense to define a run method
instead of giving a run argument to the constructor.

Switching

Switches between greenlets occur when the method switch() of a greenlet is
called, in which case execution jumps to the greenlet whose switch() is
called, or when a greenlet dies, in which case execution jumps to the
parent greenlet. During a switch, an object or an exception is “sent” to
the target greenlet; this can be used as a convenient way to pass
information between greenlets. For example:

def test1(x, y):
 z = gr2.switch(x+y)
 print(z)

def test2(u):
 print(u)
 gr1.switch(42)

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch("hello", " world")

This prints “hello world” and 42, with the same order of execution as the
previous example. Note that the arguments of test1() and test2() are not
provided when the greenlet is created, but only the first time someone
switches to it.

Here are the precise rules for sending objects around:

	g.switch(*args, **kwargs)

	Switches execution to the greenlet g, sending it the given
arguments. As a special case, if g did not start yet, then it
will start to run now.

	Dying greenlet

	If a greenlet’s run() finishes, its return value is the object
sent to its parent. If run() terminates with an exception, the
exception is propagated to its parent (unless it is a
greenlet.GreenletExit exception, in which case the exception
object is caught and returned to the parent).

Apart from the cases described above, the target greenlet normally
receives the object as the return value of the call to switch() in
which it was previously suspended. Indeed, although a call to
switch() does not return immediately, it will still return at some
point in the future, when some other greenlet switches back. When this
occurs, then execution resumes just after the switch() where it was
suspended, and the switch() itself appears to return the object that
was just sent. This means that x = g.switch(y) will send the object
y to g, and will later put the (unrelated) object that some
(unrelated) greenlet passes back to us into x.

Note that any attempt to switch to a dead greenlet actually goes to the
dead greenlet’s parent, or its parent’s parent, and so on. (The final
parent is the “main” greenlet, which is never dead.)

Methods and attributes of greenlets

	g.switch(*args, **kwargs)

	Switches execution to the greenlet g. See above.

	g.run

	The callable that g will run when it starts. After g started,
this attribute no longer exists.

	g.parent

	The parent greenlet. This is writeable, but it is not allowed to
create cycles of parents.

	g.gr_frame

	The current top frame, or None.

	g.dead

	True if g is dead (i.e. it finished its execution).

	bool(g)

	True if g is active, False if it is dead or not yet started.

	g.throw([typ, [val, [tb]]])

	Switches execution to the greenlet g, but immediately raises the
given exception in g. If no argument is provided, the exception
defaults to greenlet.GreenletExit. The normal exception
propagation rules apply, as described above. Note that calling this
method is almost equivalent to the following:

def raiser():
 raise typ, val, tb
g_raiser = greenlet(raiser, parent=g)
g_raiser.switch()

except that this trick does not work for the
greenlet.GreenletExit exception, which would not propagate
from g_raiser to g.

Greenlets and Python threads

Greenlets can be combined with Python threads; in this case, each thread
contains an independent “main” greenlet with a tree of sub-greenlets. It
is not possible to mix or switch between greenlets belonging to different
threads.

Garbage-collecting live greenlets

If all the references to a greenlet object go away (including the
references from the parent attribute of other greenlets), then there is no
way to ever switch back to this greenlet. In this case, a GreenletExit
exception is generated into the greenlet. This is the only case where a
greenlet receives the execution asynchronously. This gives
try:finally: blocks a chance to clean up resources held by the
greenlet. This feature also enables a programming style in which
greenlets are infinite loops waiting for data and processing it. Such
loops are automatically interrupted when the last reference to the
greenlet goes away.

The greenlet is expected to either die or be resurrected by having a new
reference to it stored somewhere; just catching and ignoring the
GreenletExit is likely to lead to an infinite loop.

Greenlets do not participate in garbage collection; cycles involving data
that is present in a greenlet’s frames will not be detected. Storing
references to other greenlets cyclically may lead to leaks.

Tracing support

Standard Python tracing and profiling doesn’t work as expected when used with
greenlet since stack and frame switching happens on the same Python thread.
It is difficult to detect greenlet switching reliably with conventional
methods, so to improve support for debugging, tracing and profiling greenlet
based code there are new functions in the greenlet module:

	greenlet.gettrace()

	Returns a previously set tracing function, or None.

	greenlet.settrace(callback)

	Sets a new tracing function and returns a previous tracing function, or
None. The callback is called on various events and is expected to have
the following signature:

def callback(event, args):
 if event == 'switch':
 origin, target = args
 # Handle a switch from origin to target.
 # Note that callback is running in the context of target
 # greenlet and any exceptions will be passed as if
 # target.throw() was used instead of a switch.
 return
 if event == 'throw':
 origin, target = args
 # Handle a throw from origin to target.
 # Note that callback is running in the context of target
 # greenlet and any exceptions will replace the original, as
 # if target.throw() was used with the replacing exception.
 return

For compatibility it is very important to unpack args tuple only when
event is either 'switch' or 'throw' and not when event is
potentially something else. This way API can be extended to new events
similar to sys.settrace().

C API Reference

Greenlets can be created and manipulated from extension modules written in C or
C++, or from applications that embed Python. The greenlet.h header is
provided, and exposes the entire API available to pure Python modules.

Types

	Type name

	Python name

	PyGreenlet

	greenlet.greenlet

Exceptions

	Type name

	Python name

	PyExc_GreenletError

	greenlet.error

	PyExc_GreenletExit

	greenlet.GreenletExit

Reference

	PyGreenlet_Import()

	A macro that imports the greenlet module and initializes the C API. This
must be called once for each extension module that uses the greenlet C API.

	int PyGreenlet_Check(PyObject *p)

	Macro that returns true if the argument is a PyGreenlet.

	int PyGreenlet_STARTED(PyGreenlet *g)

	Macro that returns true if the greenlet g has started.

	int PyGreenlet_ACTIVE(PyGreenlet *g)

	Macro that returns true if the greenlet g has started and has not died.

	PyGreenlet *PyGreenlet_GET_PARENT(PyGreenlet *g)

	Macro that returns the parent greenlet of g.

	int PyGreenlet_SetParent(PyGreenlet *g, PyGreenlet *nparent)

	Set the parent greenlet of g. Returns 0 for success. If -1 is returned,
then g is not a pointer to a PyGreenlet, and an AttributeError will
be raised.

	PyGreenlet *PyGreenlet_GetCurrent(void)

	Returns the currently active greenlet object.

	PyGreenlet *PyGreenlet_New(PyObject *run, PyObject *parent)

	Creates a new greenlet object with the callable run and parent
parent. Both parameters are optional. If run is NULL, then the
greenlet will be created, but will fail if switched in. If parent is
NULL, the parent is automatically set to the current greenlet.

	PyObject *PyGreenlet_Switch(PyGreenlet *g, PyObject *args, PyObject *kwargs)

	Switches to the greenlet g. args and kwargs are optional and
can be NULL. If args is NULL, an empty tuple is passed to the target
greenlet. If kwargs is NULL, no keyword arguments are passed to the target
greenlet. If arguments are specified, args should be a tuple and
kwargs should be a dict.

	PyObject *PyGreenlet_Throw(PyGreenlet *g, PyObject *typ, PyObject *val, PyObject *tb)

	Switches to greenlet g, but immediately raise an exception of type
typ with the value val, and optionally, the traceback object
tb. tb can be NULL.

Indices and tables

	Search Page

 nav.xhtml

 Table of Contents

 		
 greenlet: Lightweight concurrent programming

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

